ggplot2 dot plot : Quick start guide - R software and data visualization


This R tutorial describes how to create a dot plot using R software and ggplot2 package.

The function geom_dotplot() is used.

Prepare the data

ToothGrowth data sets are used :

# Convert the variable dose from a numeric to a factor variable
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
head(ToothGrowth)
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5

Make sure that the variable dose is converted as a factor variable using the above R script.

Basic dot plots

library(ggplot2)
# Basic dot plot
p<-ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_dotplot(binaxis='y', stackdir='center')
p
# Change dotsize and stack ratio
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_dotplot(binaxis='y', stackdir='center',
               stackratio=1.5, dotsize=1.2)
# Rotate the dot plot
p + coord_flip()

Choose which items to display :

p + scale_x_discrete(limits=c("0.5", "2"))

Add summary statistics on a dot plot

The function stat_summary() can be used to add mean/median points and more to a dot plot.

Add mean and median points

# dot plot with mean points
p + stat_summary(fun.y=mean, geom="point", shape=18,
                 size=3, color="red")
# dot plot with median points
p + stat_summary(fun.y=median, geom="point", shape=18,
                 size=3, color="red")

Dot plot with box plot and violin plot

# Add basic box plot
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_boxplot()+
  geom_dotplot(binaxis='y', stackdir='center')
# Add notched box plot
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_boxplot(notch = TRUE)+
  geom_dotplot(binaxis='y', stackdir='center')
# Add violin plot
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_violin(trim = FALSE)+
  geom_dotplot(binaxis='y', stackdir='center')

Read more on box plot : ggplot2 box plot

Read more on violin plot : ggplot2 violin plot

Add mean and standard deviation

The function mean_sdl is used. mean_sdl computes the mean plus or minus a constant times the standard deviation.

In the R code below, the constant is specified using the argument mult (mult = 1). By default mult = 2.

The mean +/- SD can be added as a crossbar or a pointrange :

p <- ggplot(ToothGrowth, aes(x=dose, y=len)) + 
    geom_dotplot(binaxis='y', stackdir='center')
p + stat_summary(fun.data="mean_sdl", fun.args = list(mult=1), 
                 geom="crossbar", width=0.5)
p + stat_summary(fun.data=mean_sdl, fun.args = list(mult=1), 
                 geom="pointrange", color="red")

Note that, you can also define a custom function to produce summary statistics as follow.

# Function to produce summary statistics (mean and +/- sd)
data_summary <- function(x) {
   m <- mean(x)
   ymin <- m-sd(x)
   ymax <- m+sd(x)
   return(c(y=m,ymin=ymin,ymax=ymax))
}

Use a custom summary function :

p + stat_summary(fun.data=data_summary, color="blue")

Change dot plot colors by groups

In the R code below, the fill colors of the dot plot are automatically controlled by the levels of dose :

# Use single fill color
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
    geom_dotplot(binaxis='y', stackdir='center', fill="#FFAAD4")
# Change dot plot colors by groups
p<-ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) +
  geom_dotplot(binaxis='y', stackdir='center')
p

It is also possible to change manually dot plot colors using the functions :

  • scale_fill_manual() : to use custom colors
  • scale_fill_brewer() : to use color palettes from RColorBrewer package
  • scale_fill_grey() : to use grey color palettes
# Use custom color palettes
p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))
# Use brewer color palettes
p+scale_fill_brewer(palette="Dark2")
# Use grey scale
p + scale_fill_grey() + theme_classic()

Read more on ggplot2 colors here : ggplot2 colors

Change the legend position

p + theme(legend.position="top")
p + theme(legend.position="bottom")
p + theme(legend.position="none") # Remove legend

The allowed values for the arguments legend.position are : “left”,“top”, “right”, “bottom”.

Read more on ggplot legends : ggplot2 legend

Change the order of items in the legend

The function scale_x_discrete can be used to change the order of items to “2”, “0.5”, “1” :

p + scale_x_discrete(limits=c("2", "0.5", "1"))

Dot plot with multiple groups

# Change dot plot colors by groups
ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
  geom_dotplot(binaxis='y', stackdir='center')
# Change the position : interval between dot plot of the same group
p<-ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
  geom_dotplot(binaxis='y', stackdir='center', 
               position=position_dodge(0.8))
p

Change dot plot colors and add box plots :

# Change colors
p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))
# Add box plots
ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
  geom_boxplot(fill="white")+
  geom_dotplot(binaxis='y', stackdir='center')
# Change the position
ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
  geom_boxplot(position=position_dodge(0.8))+
  geom_dotplot(binaxis='y', stackdir='center', 
               position=position_dodge(0.8))

Customized dot plots

# Basic dot plot
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_boxplot()+
  geom_dotplot(binaxis='y', stackdir='center')+
  labs(title="Plot of length  by dose",x="Dose (mg)", y = "Length")+
  theme_classic()
# Change color by groups
dp <-ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) + 
  geom_dotplot(binaxis='y', stackdir='center')+
  labs(title="Plot of length  by dose",x="Dose (mg)", y = "Length")
dp + theme_classic()

Change fill colors manually :

# Continuous colors
dp + scale_fill_brewer(palette="Blues") + theme_classic()
# Discrete colors
dp + scale_fill_brewer(palette="Dark2") + theme_minimal()
# Gradient colors
dp + scale_fill_brewer(palette="RdBu") + theme_minimal()

Read more on ggplot2 colors here : ggplot2 colors

Infos

This analysis has been performed using R software (ver. 3.2.4) and ggplot2 (ver. 2.1.0)


<!-- END HTML -->

Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!





This page has been seen 507198 times