ggplot2 violin plot : Quick start guide - R software and data visualization


This R tutorial describes how to create a violin plot using R software and ggplot2 package.

violin plots are similar to box plots, except that they also show the kernel probability density of the data at different values. Typically, violin plots will include a marker for the median of the data and a box indicating the interquartile range, as in standard box plots.

The function geom_violin() is used to produce a violin plot.

ggplot2 violin plot - R software and data visualization

Prepare the data

ToothGrowth data sets are used :

# Convert the variable dose from a numeric to a factor variable
ToothGrowth$dose <- as.factor(ToothGrowth$dose)
head(ToothGrowth)
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5

Make sure that the variable dose is converted as a factor variable using the above R script.

Basic violin plots

library(ggplot2)
# Basic violin plot
p <- ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_violin()
p
# Rotate the violin plot
p + coord_flip()
# Set trim argument to FALSE
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_violin(trim=FALSE)

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Note that by default trim = TRUE. In this case, the tails of the violins are trimmed. If FALSE, don’t trim the tails

Choose which items to display :

p + scale_x_discrete(limits=c("0.5", "2"))

ggplot2 violin plot - R software and data visualization

Add summary statistics on a violin plot

The function stat_summary() can be used to add mean/median points and more on a violin plot.

Add mean and median points

# violin plot with mean points
p + stat_summary(fun.y=mean, geom="point", shape=23, size=2)
# violin plot with median points
p + stat_summary(fun.y=median, geom="point", size=2, color="red")

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Add median and quartile

A solution is to use the function geom_boxplot :

p + geom_boxplot(width=0.1)

ggplot2 violin plot - R software and data visualization

Add mean and standard deviation

The function mean_sdl is used. mean_sdl computes the mean plus or minus a constant times the standard deviation.

In the R code below, the constant is specified using the argument mult (mult = 1). By default mult = 2.

The mean +/- SD can be added as a crossbar or a pointrange :

p <- ggplot(ToothGrowth, aes(x=dose, y=len)) + 
    geom_violin(trim=FALSE)
p + stat_summary(fun.data="mean_sdl", mult=1, 
                 geom="crossbar", width=0.2 )
p + stat_summary(fun.data=mean_sdl, mult=1, 
                 geom="pointrange", color="red")

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Note that, you can also define a custom function to produce summary statistics as follow :

# Function to produce summary statistics (mean and +/- sd)
data_summary <- function(x) {
   m <- mean(x)
   ymin <- m-sd(x)
   ymax <- m+sd(x)
   return(c(y=m,ymin=ymin,ymax=ymax))
}

Use a custom summary function :

p + stat_summary(fun.data=data_summary)

ggplot2 violin plot - R software and data visualization

Violin plot with dots

Dots (or points) can be added to a violin plot using the functions geom_dotplot() or geom_jitter() :

# violin plot with dot plot
p + geom_dotplot(binaxis='y', stackdir='center', dotsize=1)
# violin plot with jittered points
# 0.2 : degree of jitter in x direction
p + geom_jitter(shape=16, position=position_jitter(0.2))

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Change violin plot colors by groups

Change violin plot line colors

Violin plot line colors can be automatically controlled by the levels of dose :

# Change violin plot line colors by groups
p<-ggplot(ToothGrowth, aes(x=dose, y=len, color=dose)) +
  geom_violin(trim=FALSE)
p

ggplot2 violin plot - R software and data visualization

It is also possible to change manually violin plot line colors using the functions :

  • scale_color_manual() : to use custom colors
  • scale_color_brewer() : to use color palettes from RColorBrewer package
  • scale_color_grey() : to use grey color palettes
# Use custom color palettes
p+scale_color_manual(values=c("#999999", "#E69F00", "#56B4E9"))
# Use brewer color palettes
p+scale_color_brewer(palette="Dark2")
# Use grey scale
p + scale_color_grey() + theme_classic()

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Read more on ggplot2 colors here : ggplot2 colors

Change violin plot fill colors

In the R code below, the fill colors of the violin plot are automatically controlled by the levels of dose :

# Use single color
ggplot(ToothGrowth, aes(x=dose, y=len)) +
  geom_violin(trim=FALSE, fill='#A4A4A4', color="darkred")+
  geom_boxplot(width=0.1) + theme_minimal()
# Change violin plot colors by groups
p<-ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) +
  geom_violin(trim=FALSE)
p

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

It is also possible to change manually violin plot colors using the functions :

  • scale_fill_manual() : to use custom colors
  • scale_fill_brewer() : to use color palettes from RColorBrewer package
  • scale_fill_grey() : to use grey color palettes
# Use custom color palettes
p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))
# Use brewer color palettes
p+scale_fill_brewer(palette="Dark2")
# Use grey scale
p + scale_fill_grey() + theme_classic()

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Read more on ggplot2 colors here : ggplot2 colors

Change the legend position

p + theme(legend.position="top")
p + theme(legend.position="bottom")
p + theme(legend.position="none") # Remove legend

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

The allowed values for the arguments legend.position are : “left”,“top”, “right”, “bottom”.

Read more on ggplot legends : ggplot2 legend

Change the order of items in the legend

The function scale_x_discrete can be used to change the order of items to “2”, “0.5”, “1” :

p + scale_x_discrete(limits=c("2", "0.5", "1"))

ggplot2 violin plot - R software and data visualization

Violin plot with multiple groups

# Change violin plot colors by groups
ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
  geom_violin()
# Change the position
p<-ggplot(ToothGrowth, aes(x=dose, y=len, fill=supp)) +
  geom_violin(position=position_dodge(1))
p

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Change violin plot colors and add dots :

# Add dots
p + geom_dotplot(binaxis='y', stackdir='center',
                 position=position_dodge(1))
# Change colors
p+scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Customized violin plots

# Basic violin plot
ggplot(ToothGrowth, aes(x=dose, y=len)) + 
  geom_violin(trim=FALSE, fill="gray")+
  labs(title="Plot of length  by dose",x="Dose (mg)", y = "Length")+
  geom_boxplot(width=0.1)+
  theme_classic()
# Change color by groups
dp <- ggplot(ToothGrowth, aes(x=dose, y=len, fill=dose)) + 
  geom_violin(trim=FALSE)+
  geom_boxplot(width=0.1, fill="white")+
  labs(title="Plot of length  by dose",x="Dose (mg)", y = "Length")
dp + theme_classic()

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Change fill colors manually :

# Continusous colors
dp + scale_fill_brewer(palette="Blues") + theme_classic()
# Discrete colors
dp + scale_fill_brewer(palette="Dark2") + theme_minimal()
# Gradient colors
dp + scale_fill_brewer(palette="RdBu") + theme_minimal()

ggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualizationggplot2 violin plot - R software and data visualization

Read more on ggplot2 colors here : ggplot2 colors

Infos

This analysis has been performed using R software (ver. 3.1.2) and ggplot2 (ver. 1.0.0)


Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!





This page has been seen 898168 times