GGally R package: Extension to ggplot2 for correlation matrix and survival plots - R software and data visualization


GGally extends ggplot2 by providing several functions including:

  • ggcor(): for pairwise correlation matrix plot
  • ggpairs(): for scatterplot plot matrix
  • ggsurv(): for survival plot

Installation

GGally can be installed from GitHub or CRAN:

# Github
if(!require(devtools)) install.packages("devtools")
devtools::install_github("ggobi/ggally")
# CRAN
install.packages("GGally")

Loading GGally package

library("GGally")

ggcorr(): Plot a correlation matrix

The function ggcorr() draws a correlation matrix plot using ggplot2.

The simplified format is:

ggcorr(data, palette = "RdYlGn", name = "rho", 
       label = FALSE, label_color = "black",  ...)

  • data: a numerical (continuous) data matrix
  • palette: a ColorBrewer palette to be used for correlation coefficients. Default value is “RdYlGn”.
  • name: a character string used for legend title.
  • label: logical value. If TRUE, the correlation coefficients are displayed on the plot.
  • label_color: color to be used for the correlation coefficient


The function ggcorr() can be used as follow:

# Prepare some data
df <- mtcars[, c(1,3,4,5,6,7)]
# Correlation plot
ggcorr(df, palette = "RdBu", label = TRUE)

ggplot2 and ggally - R software and data visualization

Read also: ggplot2 correlation matrix heatmap

ggpairs(): ggplot2 matrix of plots

The function ggpairs() produces a matrix of scatter plots for visualizing the correlation between variables.

The simplified format is:

ggpairs(data, columns = 1:ncol(data), title = "",  
  axisLabels = "show", columnLabels = colnames(data[, columns]))

  • data: data set. Can have both numerical and categorical data.
  • columns: columns to be used for the plots. Default is all columns.
  • title: title for the graph
  • axisLabels: Allowed values are either “show” to display axisLabels, “internal” for labels in the diagonal plots, or “none” for no axis labels
  • columnLabels: label names to be displayed. Defaults to names of columns being used.


ggpairs(df)

ggplot2 and ggally - R software and data visualization

ggsurv(): Plot survival curve using ggplot2

The function ggsurv() can be used to produces Kaplan-Meier plots using ggplot2 .

The simplified format is:

ggsurv(s, surv.col = "gg.def", plot.cens = TRUE, cens.col = "red",
       xlab = "Time", ylab = "Survival", main = "")

  • s: an object of class survfit
  • surv.col: color of the survival estimate. The default value is black for one stratum; default ggplot2 colors for multiple strata. It can be also a vector containing the color names for each stratum.
  • plot.cens: logical value. If TRUE, marks the censored observations.
  • cens.col: color of the points that mark censored observations.
  • xlab, ylab: label of x-axis and y-axis, respectively
  • main: the plot main title


Data

We’ll use lung data from the package survival:

require(survival)
data(lung, package = "survival")
head(lung[, 1:5])
##   inst time status age sex
## 1    3  306      2  74   1
## 2    3  455      2  68   1
## 3    3 1010      1  56   1
## 4    5  210      2  57   1
## 5    1  883      2  60   1
## 6   12 1022      1  74   1

The data above includes:

  • time: Survival time in days
  • status: censoring status 1 = censored, 2 = dead
  • sex: Male = 1; Female = 2

In the next section we’ll plot the survival curves of male and female.

Survival curves

require("survival")
# Fit survival functions
surv <- survfit(Surv(time, status) ~ sex, data = lung)
# Plot survival curves
surv.p <- ggsurv(surv)
surv.p

ggplot2 and ggally - R software and data visualization

It’s possible to change the legend of the plot as follow:

require(ggplot2)
surv.p + guides(linetype = FALSE) +
scale_colour_discrete(name   = 'Sex', breaks = c(1,2), 
                      labels = c('Male', 'Female'))

ggplot2 and ggally - R software and data visualization

Infos

This analysis has been performed using R software (ver. 3.2.1) and ggplot2 (ver. 1.0.1)


Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!





This page has been seen 145508 times