Preparing and Reshaping Data in R for Easier Analyses


Previously, we described the essentials of R programming and provided quick start guides for importing data into R. The next crucial step is to set your data into a consistent data structure for easier analyses. Here, you’ll learn modern conventions for preparing and reshaping data in order to facilitate analyses in R.


Importing data into R



  1. Tibble Data Format in R: Best and Modern Way to Work with your Data
  • Installing and loading tibble package: type install.packages(“tibble”) for installing and library(“tibble”) for loading.
  • Create a new tibble: data_frame(x = rnorm(100), y = rnorm(100)).
  • Convert your data as a tibble: as_data_frame(iris)
  • Advantages of tibbles compared to data frames: nice printing methods for large data sets, specification of column types.


tibble data format: tbl_df

Read more: Tibble Data Format in R: Best and Modern Way to Work with your Data

  1. Tidyr: crucial Step Reshaping Data with R for Easier Analyses
  • What is a tidy data set?: a data structure convention where each column is a variable and each row an observation
  • Reshaping data using tidyr package
    • Installing and loading tidyr: type install.packages(“tidyr”) for installing and library(“tidyr”) for loading.
    • Example data sets: USArrests
    • gather(): collapse columns into rows
    • spread(): spread two columns into multiple columns
    • unite(): Unite multiple columns into one
    • separate(): separate one column into multiple
    • %>%: Chaining multiple operations


Tidyr: crucial Step Reshaping Data with R for Easier Analyses

Read more: Tidyr: crucial Step Reshaping Data with R for Easier Analyses



Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!





This page has been seen 62358 times