Preparing and Reshaping Data in R for Easier Analyses
Previously, we described the essentials of R programming and provided quick start guides for importing data into R. The next crucial step is to set your data into a consistent data structure for easier analyses. Here, you’ll learn modern conventions for preparing and reshaping data in order to facilitate analyses in R.
- Installing and loading tibble package: type install.packages(“tibble”) for installing and library(“tibble”) for loading.
- Create a new tibble: data_frame(x = rnorm(100), y = rnorm(100)).
- Convert your data as a tibble: as_data_frame(iris)
- Advantages of tibbles compared to data frames: nice printing methods for large data sets, specification of column types.
Read more: Tibble Data Format in R: Best and Modern Way to Work with your Data
- What is a tidy data set?: a data structure convention where each column is a variable and each row an observation
- Reshaping data using tidyr package
- Installing and loading tidyr: type install.packages(“tidyr”) for installing and library(“tidyr”) for loading.
- Example data sets: USArrests
- gather(): collapse columns into rows
- spread(): spread two columns into multiple columns
- unite(): Unite multiple columns into one
- separate(): separate one column into multiple
- %>%: Chaining multiple operations
Read more: Tidyr: crucial Step Reshaping Data with R for Easier Analyses
Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Recommended for You!
Recommended for you
This section contains the best data science and self-development resources to help you on your path.
Books - Data Science
Our Books
- Practical Guide to Cluster Analysis in R by A. Kassambara (Datanovia)
- Practical Guide To Principal Component Methods in R by A. Kassambara (Datanovia)
- Machine Learning Essentials: Practical Guide in R by A. Kassambara (Datanovia)
- R Graphics Essentials for Great Data Visualization by A. Kassambara (Datanovia)
- GGPlot2 Essentials for Great Data Visualization in R by A. Kassambara (Datanovia)
- Network Analysis and Visualization in R by A. Kassambara (Datanovia)
- Practical Statistics in R for Comparing Groups: Numerical Variables by A. Kassambara (Datanovia)
- Inter-Rater Reliability Essentials: Practical Guide in R by A. Kassambara (Datanovia)
Others
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham & Garrett Grolemund
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Géron
- Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce & Andrew Bruce
- Hands-On Programming with R: Write Your Own Functions And Simulations by Garrett Grolemund & Hadley Wickham
- An Introduction to Statistical Learning: with Applications in R by Gareth James et al.
- Deep Learning with R by François Chollet & J.J. Allaire
- Deep Learning with Python by François Chollet
Get involved :
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)
Articles contained by this category :
Tibble Data Format in R: Best and Modern Way to Work with Your Data
Tidyr: Crucial Step Reshaping Data with R for Easier Analyses