Import and export data
Table of contents

RQuery has been created for beginners in R. It can also be useful to an advanced programmer in R.
This file contains a set of R functions to simplify your life in R programming
<h2 class="formatter-title wiki-paragraph-2" id="paragraph-file-formats-for-rquery">File formats for RQuery</h2>
Download an example of file format for RQuery: decathlon.txt



To avoid error :
<ul class="bb_ul">
<li class="bb_li"> Avoid column names beginning with a digit. Ex: use C1 instead of 1C
</li><li class="bb_li"> Avoid accented characters and spaces in row names and column names. Replace spaces with an 'underscore'. Ex: use 'voiture_renault' instead of 'Voiture renault'.
</li></ul>
In general, the rows correspond to individuals or samples and the columns correspond to variables or parameters describing individuals (Ex: hair_colors, eye_colors).

<h2 class="formatter-title wiki-paragraph-2" id="paragraph-importing-and-exporting-data">Importing and Exporting Data</h2>
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-import-data-from-a-txt-tabulation-file-format">Import data from a *. txt tabulation file format </h3>
Use the following R code :
Code R :
rquery.read_file()
A GUI will appear asking you to indicate the file path to import.
The data are shown directly in R console.
To store the data in an R object, use :
Code R :
mydata<-rquery.read_file()
To ensure that your data is stored in mydata, just type in the R console the name of your variable.
Code R :
mydata
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-export-data-in-a-txt-tabulation-file-format">Export data in a *. txt tabulation file format</h3>
The function is called rquery.write_file.
parameters:
mydata = the name of your variable to be exported.
file.name = the filename to save your dataset.
Code R :
rquery.write_file(mydata, file.name="res.txt")
The file will be created in your working directory. To know your working directory, use the command getwd()
Code R :
getwd()
The file is opened automatically by R after saving the file.
Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Recommended for You!
Recommended for you
This section contains the best data science and self-development resources to help you on your path.
Books - Data Science
Our Books
- Practical Guide to Cluster Analysis in R by A. Kassambara (Datanovia)
- Practical Guide To Principal Component Methods in R by A. Kassambara (Datanovia)
- Machine Learning Essentials: Practical Guide in R by A. Kassambara (Datanovia)
- R Graphics Essentials for Great Data Visualization by A. Kassambara (Datanovia)
- GGPlot2 Essentials for Great Data Visualization in R by A. Kassambara (Datanovia)
- Network Analysis and Visualization in R by A. Kassambara (Datanovia)
- Practical Statistics in R for Comparing Groups: Numerical Variables by A. Kassambara (Datanovia)
- Inter-Rater Reliability Essentials: Practical Guide in R by A. Kassambara (Datanovia)
Others
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham & Garrett Grolemund
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Géron
- Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce & Andrew Bruce
- Hands-On Programming with R: Write Your Own Functions And Simulations by Garrett Grolemund & Hadley Wickham
- An Introduction to Statistical Learning: with Applications in R by Gareth James et al.
- Deep Learning with R by François Chollet & J.J. Allaire
- Deep Learning with Python by François Chollet
Get involved :
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)