Visualize correlation matrix using symnum function
<!--====================== start from here when you copy to sthda================-->
<div id="rdoc">
<div id="TOC">
<ul>
<li><a href="#graph-of-correlation-matrix-using-symnum-function">Graph of correlation matrix using symnum function</a></li>
<li><a href="#conclusions">Conclusions</a></li>
<li><a href="#infos">Infos</a></li>
</ul>
</div>
<p>This article describes how to make a <strong>graph of correlation matrix</strong> in <strong>R</strong>. The R <strong>symnum()</strong> function is used. It takes the <strong>correlation table</strong> as an argument. The result is a table in which <strong>correlation coefficients</strong> are replaced by symbols according to the <strong>degree of correlation</strong>.</p>
<div class="block">
<i class="fa - fa-cogs fa-4x valign_middle"></i> Note that online software is also available <a href="/english/rsthda/correlation-matrix.php">here</a> to compute <strong>correlation matrix</strong> and to plot a <strong>correlogram</strong> without any installation.
</div>
<div id="graph-of-correlation-matrix-using-symnum-function" class="section level1">
<h1>Graph of correlation matrix using symnum function</h1>
<p>The R function <strong>symnum</strong> can be used to easily highlight the highly correlated variables. It replaces correlation coefficients by symbols according to the value.</p>
<p>The simplified format of the function is :</p>
<pre class="r"><code>symnum(x, cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols = c(" ", ".", ",", "+", "*", "B"))</code></pre>
<p><span class="warning"> - <strong>x</strong> is the correlation matrix to visualize
- <strong>cutpoints</strong> : <strong>correlation coefficient</strong> cutpoints. The <strong>correlation coefficients</strong> between 0 and 0.3 are replaced by a space (" “; <strong>correlation coefficients</strong> between 0.3 and 0.6 are replace by”.“; etc …
- <strong>symbols</strong> : the symbols to use. </span></p>
<p>The following R code performs a <strong>correlation analysis</strong> and displays a <strong>graph of the correlation matrix</strong> :</p>
<pre class="r"><code>## Correlation matrix
corMat<-cor(mtcars)
head(round(corMat,2))</code></pre>
<pre><code> mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1.00 -0.85 -0.85 -0.78 0.68 -0.87 0.42 0.66 0.60 0.48 -0.55
cyl -0.85 1.00 0.90 0.83 -0.70 0.78 -0.59 -0.81 -0.52 -0.49 0.53
disp -0.85 0.90 1.00 0.79 -0.71 0.89 -0.43 -0.71 -0.59 -0.56 0.39
hp -0.78 0.83 0.79 1.00 -0.45 0.66 -0.71 -0.72 -0.24 -0.13 0.75
drat 0.68 -0.70 -0.71 -0.45 1.00 -0.71 0.09 0.44 0.71 0.70 -0.09
wt -0.87 0.78 0.89 0.66 -0.71 1.00 -0.17 -0.55 -0.69 -0.58 0.43</code></pre>
<pre class="r"><code>## Correlation graph for visualization
## abbr.colnames=FALSE to avoid abbreviation of column names
symnum(corMat, abbr.colnames=FALSE)</code></pre>
<pre><code> mpg cyl disp hp drat wt qsec vs am gear carb
mpg 1
cyl + 1
disp + * 1
hp , + , 1
drat , , , . 1
wt + , + , , 1
qsec . . . , 1
vs , + , , . . , 1
am . . . , , 1
gear . . . , . , 1
carb . . . , . , . 1
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1</code></pre>
</div>
<div id="conclusions" class="section level1">
<h1>Conclusions</h1>
<div class="block">
One of the easy way to visualize <strong>correlation matrix</strong> in R is to use the <strong>symnum()</strong> R function.
</div>
</div>
<div id="infos" class="section level1">
<h1>Infos</h1>
<pre class="warning"><code>This analysis was performed using R (ver. 3.1.0).</code></pre>
</div>
<script>jQuery(document).ready(function () {
jQuery('h1').addClass('wiki_paragraph1');
jQuery('h2').addClass('wiki_paragraph2');
jQuery('h3').addClass('wiki_paragraph3');
jQuery('h4').addClass('wiki_paragraph4');
});//add phpboost class to header</script>
<style>.content{padding:0px;}</style>
</div><!--end rdoc-->
<!--====================== stop here when you copy to sthda================-->
[/html]
Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Recommended for You!
Recommended for you
This section contains the best data science and self-development resources to help you on your path.
Books - Data Science
Our Books
- Practical Guide to Cluster Analysis in R by A. Kassambara (Datanovia)
- Practical Guide To Principal Component Methods in R by A. Kassambara (Datanovia)
- Machine Learning Essentials: Practical Guide in R by A. Kassambara (Datanovia)
- R Graphics Essentials for Great Data Visualization by A. Kassambara (Datanovia)
- GGPlot2 Essentials for Great Data Visualization in R by A. Kassambara (Datanovia)
- Network Analysis and Visualization in R by A. Kassambara (Datanovia)
- Practical Statistics in R for Comparing Groups: Numerical Variables by A. Kassambara (Datanovia)
- Inter-Rater Reliability Essentials: Practical Guide in R by A. Kassambara (Datanovia)
Others
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham & Garrett Grolemund
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Géron
- Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce & Andrew Bruce
- Hands-On Programming with R: Write Your Own Functions And Simulations by Garrett Grolemund & Hadley Wickham
- An Introduction to Statistical Learning: with Applications in R by Gareth James et al.
- Deep Learning with R by François Chollet & J.J. Allaire
- Deep Learning with Python by François Chollet
Get involved :
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)