[RWSTHDA-1.1] - Quickstart
Table of contents
You must be a member of STHDA web site to use RWSTHDA software.
To register click here
After registration, login with your credentials.
<h2 class="formatter-title wiki-paragraph-2" id="paragraph-use-rwsthda">Use RWSTHDA</h2>
To access to RWSTHDA software click here.
(Click to enlarge)
<h2 class="formatter-title wiki-paragraph-2" id="paragraph-overview-of-rwsthda-software">Overview of RWSTHDA software</h2>
RWSTHDA has a console to run the R script and a graphical interface to make many analysis and graphics.
The software features are shown in the video below :
(Click to see the tutorial)
RWSTHDA software has several tabs described below :
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-settings">Settings</h3>
This tab allows you to modify the software options including the theme.
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-file">File</h3>
This tab allows you to add and delete files.
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-analysis">Analysis</h3>
- PCA - Principal Component Analysis
- CA - Correspondence Analysis
- MCA - Multiple Correspondance Analysis
- Kaplan-Meier
- Maxstat
- Cox model
- Correlation test
- Correlation matrix
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-graphiques">Graphiques</h3>
The graphics are interactively made by RWSTHDA software using ggplot2 package.
<h3 class="formatter-title wiki-paragraph-3" id="paragraph-statistics">Statistics</h3>
- Description of data table
- Description of numeric variable
- One sample Student test
- Independent samples Student test
- Paired Student test
- ANOVA
- Independent samples Wilcoxon test
- Paired samples Wilcoxon test
<h2 class="formatter-title wiki-paragraph-2" id="paragraph-change-rwsthda-theme">Change RWSTHDA theme</h2>
Several themes are available for RWSTHDA software.
To change the theme, click Settings -> Themes -> select the prefered theme
(Cliquer pour voir le tutoriel)
<h2 class="formatter-title wiki-paragraph-2" id="paragraph-submit-r-script-using-rwsthda-console">Submit R script using RWSTHDA console</h2>
To do this, simply write your script in the console and then click on send.
To draw a graph, you must use the following procedure:
Code R :
png(file="boxplot.png") boxplot(rnorm(20)) dev.off()
You can also use R jpeg function.
The graphics script should definitely be of the form :
Code R :
png(file="myfile.png") plot(1) dev.off()
or
Code R :
jpeg(file="myfile.jpg") plot(1) dev.off()
(Click to see the tutorial)
Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Show me some love with the like buttons below... Thank you and please don't forget to share and comment below!!
Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l'envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Montrez-moi un peu d'amour avec les like ci-dessous ... Merci et n'oubliez pas, s'il vous plaît, de partager et de commenter ci-dessous!
Recommended for You!
Recommended for you
This section contains the best data science and self-development resources to help you on your path.
Books - Data Science
Our Books
- Practical Guide to Cluster Analysis in R by A. Kassambara (Datanovia)
- Practical Guide To Principal Component Methods in R by A. Kassambara (Datanovia)
- Machine Learning Essentials: Practical Guide in R by A. Kassambara (Datanovia)
- R Graphics Essentials for Great Data Visualization by A. Kassambara (Datanovia)
- GGPlot2 Essentials for Great Data Visualization in R by A. Kassambara (Datanovia)
- Network Analysis and Visualization in R by A. Kassambara (Datanovia)
- Practical Statistics in R for Comparing Groups: Numerical Variables by A. Kassambara (Datanovia)
- Inter-Rater Reliability Essentials: Practical Guide in R by A. Kassambara (Datanovia)
Others
- R for Data Science: Import, Tidy, Transform, Visualize, and Model Data by Hadley Wickham & Garrett Grolemund
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Géron
- Practical Statistics for Data Scientists: 50 Essential Concepts by Peter Bruce & Andrew Bruce
- Hands-On Programming with R: Write Your Own Functions And Simulations by Garrett Grolemund & Hadley Wickham
- An Introduction to Statistical Learning: with Applications in R by Gareth James et al.
- Deep Learning with R by François Chollet & J.J. Allaire
- Deep Learning with Python by François Chollet
Get involved :
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)
Click to follow us on Facebook :
Comment this article by clicking on "Discussion" button (top-right position of this page)