# Articles - Cluster Analysis in R: Practical Guide

## Cluster Analysis in R Simplified and Enhanced

|   3525  |  Comment (1)  |  Cluster Analysis in R: Practical Guide

In R, standard clustering methods (partitioning and hierarchical clustering) can be computed using the R packages stats and cluster. However the workflow, generally, requires multiple steps and multiple lines of R codes.

This article describes some easy-to-use wrapper functions, in the factoextra R package, for simplifying and improving cluster analysis in R. These functions include:

1. get_dist() & fviz_dist() for computing and visualizing distance matrix between rows of a data matrix. Compared to the standard dist() function, get_dist() supports correlation-based distance measures including “pearson”, “kendall” and “spearman” methods.

2. eclust(): enhanced cluster analysis. It has several advantages:
• It simplifies the workflow of clustering analysis
• It can be used to compute hierarchical clustering and partititioning clustering in a single line function call
• Compared to the standard partitioning functions (kmeans, pam, clara and fanny) which requires the user to specify the optimal number of clusters, the function eclust() computes automatically the gap statistic for estimating the right number of clusters.
• For hierarchical clustering, correlation-based metric is allowed
• It provides silhouette information for all partitioning methods and hierarchical clustering
• It creates beautiful graphs using ggplot2

## Required packages

We’ll use the factoextra package for an enhanced cluster analysis and visualization.

• Install factoextra:
``install.packages("factoextra")``
• Load factoextra
``library(factoextra)``

## Data preparation

The built-in R dataset USArrests is used:

``````# Load and scale the dataset
data("USArrests")
df <- scale(USArrests)
head(df)``````
``````##            Murder Assault UrbanPop     Rape
## Alabama    1.2426   0.783   -0.521 -0.00342
## Alaska     0.5079   1.107   -1.212  2.48420
## Arizona    0.0716   1.479    0.999  1.04288
## Arkansas   0.2323   0.231   -1.074 -0.18492
## California 0.2783   1.263    1.759  2.06782
## Colorado   0.0257   0.399    0.861  1.86497``````

## Distance matrix computation and visualization

``````library(factoextra)
# Correlation-based distance method
res.dist <- get_dist(df, method = "pearson")
head(round(as.matrix(res.dist), 2))[, 1:6]``````
``````##            Alabama Alaska Arizona Arkansas California Colorado
## Alabama       0.00   0.71    1.45     0.09       1.87     1.69
## Alaska        0.71   0.00    0.83     0.37       0.81     0.52
## Arizona       1.45   0.83    0.00     1.18       0.29     0.60
## Arkansas      0.09   0.37    1.18     0.00       1.59     1.37
## California    1.87   0.81    0.29     1.59       0.00     0.11
## Colorado      1.69   0.52    0.60     1.37       0.11     0.00``````
``````# Visualize the dissimilarity matrix
fviz_dist(res.dist, lab_size = 8)``````

In the plot above, similar objects are close to one another. Red color corresponds to small distance and blue color indicates big distance between observation.

## Enhanced clustering analysis

The standard R code for computing hierarchical clustering looks like this:

``````# Load and scale the dataset
data("USArrests")
df <- scale(USArrests)
# Compute dissimilarity matrix
res.dist <- dist(df, method = "euclidean")
# Compute hierarchical clustering
res.hc <- hclust(res.dist, method = "ward.D2")
# Visualize
plot(res.hc, cex = 0.5)``````

In this section we’ll describe the eclust() function [factoextra package] to simplify the workflow. The format is as follow:

``eclust(x, FUNcluster = "kmeans", hc_metric = "euclidean", ...)``
• x: numeric vector, data matrix or data frame
• FUNcluster: a clustering function including “kmeans”, “pam”, “clara”, “fanny”, “hclust”, “agnes” and “diana”. Abbreviation is allowed.
• hc_metric: character string specifying the metric to be used for calculating dissimilarities between observations. Allowed values are those accepted by the function dist() [including “euclidean”, “manhattan”, “maximum”, “canberra”, “binary”, “minkowski”] and correlation based distance measures [“pearson”, “spearman” or “kendall”]. Used only when FUNcluster is a hierarchical clustering function such as one of “hclust”, “agnes” or “diana”.
• …: other arguments to be passed to FUNcluster.

In the following R code, we’ll show some examples for enhanced k-means clustering and hierarchical clustering. Note that the same analysis can be done for PAM, CLARA, FANNY, AGNES and DIANA.

``````library("factoextra")
# Enhanced k-means clustering
res.km <- eclust(df, "kmeans", nstart = 25)``````
``````## Clustering k = 1,2,..., K.max (= 10): .. done
## Bootstrapping, b = 1,2,..., B (= 100)  [one "." per sample]:
## .................................................. 50
## .................................................. 100``````

``````# Gap statistic plot
fviz_gap_stat(res.km\$gap_stat)``````

``````# Silhouette plot
fviz_silhouette(res.km)``````
``````##   cluster size ave.sil.width
## 1       1    8          0.39
## 2       2   16          0.34
## 3       3   13          0.37
## 4       4   13          0.27``````

``````# Optimal number of clusters using gap statistics
res.km\$nbclust``````
``## [1] 4``
``````# Print result
res.km``````
``````## K-means clustering with 4 clusters of sizes 8, 16, 13, 13
##
## Cluster means:
##   Murder Assault UrbanPop    Rape
## 1  1.412   0.874   -0.815  0.0193
## 2 -0.489  -0.383    0.576 -0.2617
## 3 -0.962  -1.107   -0.930 -0.9668
## 4  0.695   1.039    0.723  1.2769
##
## Clustering vector:
##        Alabama         Alaska        Arizona       Arkansas     California
##              1              4              4              1              4
##       Colorado    Connecticut       Delaware        Florida        Georgia
##              4              2              2              4              1
##         Hawaii          Idaho       Illinois        Indiana           Iowa
##              2              3              4              2              3
##         Kansas       Kentucky      Louisiana          Maine       Maryland
##              2              3              1              3              4
##  Massachusetts       Michigan      Minnesota    Mississippi       Missouri
##              2              4              3              1              4
##        Montana       Nebraska         Nevada  New Hampshire     New Jersey
##              3              3              4              3              2
##     New Mexico       New York North Carolina   North Dakota           Ohio
##              4              4              1              3              2
##       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina
##              2              2              2              2              1
##   South Dakota      Tennessee          Texas           Utah        Vermont
##              3              1              4              2              3
##       Virginia     Washington  West Virginia      Wisconsin        Wyoming
##              2              2              3              3              2
##
## Within cluster sum of squares by cluster:
## [1]  8.32 16.21 11.95 19.92
##  (between_SS / total_SS =  71.2 %)
##
## Available components:
##
##  [1] "cluster"      "centers"      "totss"        "withinss"
##  [5] "tot.withinss" "betweenss"    "size"         "iter"
##  [9] "ifault"       "clust_plot"   "silinfo"      "nbclust"
## [13] "data"         "gap_stat"``````
`````` # Enhanced hierarchical clustering
res.hc <- eclust(df, "hclust") # compute hclust``````
``````## Clustering k = 1,2,..., K.max (= 10): .. done
## Bootstrapping, b = 1,2,..., B (= 100)  [one "." per sample]:
## .................................................. 50
## .................................................. 100``````
`` fviz_dend(res.hc, rect = TRUE) # dendrogam``

`` fviz_silhouette(res.hc) # silhouette plot``
``````##   cluster size ave.sil.width
## 1       1   19          0.26
## 2       2   19          0.28
## 3       3   12          0.43``````

`` fviz_cluster(res.hc) # scatter plot``

It’s also possible to specify the number of clusters as follow:

``eclust(df, "kmeans", k = 4)``